Financial Forecasting with Machine Learning: Price Vs Return

نویسندگان

چکیده

Forecasting directional movement of stock price using machine learning tools has attracted a considerable amount research. Two the most common input features in forecasting model are and return. The choice between former latter variables is often subjective. In this study, we compare effectiveness return as models. We perform an extensive comparison two 10-year historical data ten large cap US companies. employ four popular classification algorithms basis models used our study. results show that more effective standalone feature than equalize when add technical indicators to set. conclude generally potent value predicting direction movement. Our should aid researchers practitioners interested applying forecasting.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Financial time series forecasting with machine learning techniques: a survey

Stock index forecasting is vital for making informed investment decisions. This paper surveys recent literature in the domain of machine learning techniques and artificial intelligence used to forecast stock market movements. The publications are categorised according to the machine learning technique used, the forecasting timeframe, the input variables used, and the evaluation techniques emplo...

متن کامل

Time series forecasting of Bitcoin price based on ARIMA and machine learning approaches

Bitcoin as the current leader in cryptocurrencies is a new asset class receiving significant attention in the financial and investment community and presents an interesting time series prediction problem. In this paper, some forecasting models based on classical like ARIMA and machine learning approaches including Kriging, Artificial Neural Network (ANN), Bayesian method, Support Vector Machine...

متن کامل

Load -Price Forecasting Model Employing Machine Learning Techniques

Short term load forecasting is always an important study from operational and planning point of view. But short term price forecasting is a new topic. In this study, with the implementation of machine learning techniques, a new algorithm is proposed to predict both load and price values. A machine learning techniques such as Principle Component Analysis, and K nearest neighbor points, are appli...

متن کامل

Financial Time Series Forecasting – a Machine Learning Approach

The Stock Market is known for its volatile and unstable nature. A particular stock could be thriving in one period and declining in the next. Stock traders make money from buying equity when they are at their lowest and selling when they are at their highest. The logical question would be: "What Causes Stock Prices To Change?". At the most fundamental level, the answer to this would be the dema...

متن کامل

Bridging the divide in financial market forecasting: machine learners vs. financial economists

Financial time series forecasting is a popular application of machine learning methods. Previous studies report that advanced forecasting methods predict price changes in financial markets with high accuracy and that profit can be made trading on these predictions. However, financial economists point to the informational efficiency of financial markets, which questions price predictability and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computer Science

سال: 2021

ISSN: ['1552-6607', '1549-3636']

DOI: https://doi.org/10.3844/jcssp.2021.251.264